Areal data

Reminder about types of data
o Geostatistical data:
o Z(s) exists everyhere, varies continuously
o Can accommodate sudden changes by using a model for the mean
o E.g., soil pH, two soil types with different pH
model includes mean that depends on soil type
error = small scale variation, assumed continuous
use Universal kriging to predict/map

o Areal data

o Spatial data measured and reported by regions
o Only one value for each region

o May vary continuously within region
o But data only available for a region

o abrupt change at region boundaries are likely
o Unlike geostat data, “location” is arbitrary within region

@ Some examples of areal data in pictures
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Number of plant species in 20cm x 20 cm patches of alpine
tundra
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Wheat yield

Wheat uniformity trial
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Incidence of flu in lowa: made up data
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Areal data

@ Areal data often arises by aggregation
o number of disease cases by county

@ but doesn’t have to: US states, coded by party of state Governor
@ Distinction between Geostat and Areal can be blurred
o SST data: starts as geostatistical data
o displayed as single value per spatial grid cell (e.g., 1° x 1° area)
o To me:
o relative scale, size of measurement to span of study area
o are measurements available for all units?
o Distinction between Areal and Point pattern can be blurred
o Disease cases: will treat as areal data
e but point pattern if have individual locations (household address)
o and OK to assume household address is the “location” (work?
shopping?)

@ Again, relative scale matters. What is the location of an individual?
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Areal D
Goals:

@ Visualize data

@ Describe spatial dependence
@ Predict values
o Less common to predict at new locations
o because likely to have data on all locations
(Auckland districts/quadrats/plots)
o But predictions at measured locations will smooth the data
o Assume observations are “noisy”,
i.e., measurement error at each location,
o Want to smooth (reduce amount of noise)
e i.e., predict “true” values at observed locations
o Like measurement error kriging

o Fit regression models while accounting for spatial dependence
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Describing associatio

@ Spatial association as a function of what?

o Consider data on a grid, e.g. species diversity in alpine tundra
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Describing association: Spp diversity in alpine tundra
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Describing associatio

@ Could describe in terms of distance

e 1 = up/down or across

o /2 = diagonal, and so on

e 2= up/down or across 2
@ But approximate, since distances between areas, not points
o What about irregular regions (e.g. Auckland, on next slide)?
o Use distance between centroids of regions - perhaps

e but depends on size of region
@ Usual solution: pairwise “connectivity”:

o how well connected are two regions?
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Connectivity

@ On a grid: (spp diversity picture on next slide)
@ two common definitions of connectivity
e rook's move: a square in the middle connects to the two on either side
and the two above/below
e queen's move: a square in the middle connects to its 8 neighbors
(rooks + 4 diagonals)

@ squares on edge have 3/5 neighbors; those in the corners have only
2/3
@ Connections define the “spatial proximity” matrix,
also called “spatial connectivity” matrix
o # rows = # columns = # regions
o 1 if a pair of regions connect
o 0 otherwise
o always 0 down the diagonals
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Connectivity
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Connectivity - options

@ Irregular regions: two approaches
o 1 if two regions share a boundary
very irregular neighbor count.
Auckland: from 1 - 10 neighbors, median 4
o Could also use % boundary shared
very useful for modeling transport among regions
economic flows, disease propagation, invasive spp
@ Could also use distance. Options include:
o all regions with centroids within d of target (0/1)
o find the k nearest neighbors (k smallest distance between centroids)
o make weight a function of distance, d=*
o Can use values as they are
@ Or row-standardize
@ so row sum = 1
o if have 2 N's, each has connectivity 1/2
o if have 4 N's, each has connectivity 1/4

@ All are different views of how region A might influence B
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Connectivity

No standard way.

If there is something that makes sense for the problem: use it!
best if connectedness measure informed by subject-matter knowledge
When no such insight, most common is:

o shared boundary = 0/1, perhaps with row standardization

@ choice does have statistical consequences, especially when
predicting/smoothing
@ Some weight matrices are symmetrical
e 0/1 shared boundary
o d™ ™
@ others are not

o % shared boundary
o row-standardized matrices
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Spatial dependence

@ One very common measure, one less common
@ Moran’s /, dates to 1950

1 w(Yi = Y)Y - Y)

2 T jwi

s

“»
Il

NZi(Yi —Y)?, ie., mle, not usual unbiased est.

o wj is the ij'th element of the spatial weight matrix
@ looks like a correlation coefficient between two variables, Y, Z:

, o =iz Y)(Zi - 2)
" nVar Y Var Z

@ [ ranges from +1 to -1
e 0: no spatial correlation
o 1: perfect positive correlation
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ran’s |

@ Tests of correlation = 0:

o 1) If sufficient # regions, | ~ N with mean and variance that can be
computed
s El= N_—}l variance formula not insightful
e not clear what is “sufficient”, depends on W, but would like 20 or
more regions

@ 2) permutation: randomly shuffle observed values over the regions,
compute / each time
#more extreme
#permutations
#more extreme-+1
#permutations+1
o +1 accounts for the observed data (already included in all

permutations)

e enumerate all permutations: p =

o sample (randomization test): p =

@ Usually one-sided test, only interested in positive spatial dependence
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's | I
ans | example
e /| =0.751

@ randomization test: 0.751 exceeds all 9,999 randomizations, p =
1/10,000 = 0.0001 . R
@ normal approximation: E / = -0.0157, Var | = 0.00451

7= \'/% =114, p < 0.0001
ar

Density
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o Based on squared differences, not covariance

e N1 Tijwy(Yi— V)2
2wy (Y- V)2

similar in spirit to semivariance in geostats
denominator scales to £1

usually similar to but not same as Moran's |
when there is a difference

o [ is a more global indicator, because uses Y
e c is more sensitive to differences in local neighborhoods

Test Ho: no spatial dependence using permutations or normal
approximation

Notice that both / and ¢ sum over all pairs of points.
e One number for entire region
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Local indicators of spatial association

o rewrite / as:

1 _ _
I=as Z,-J-w,-jz"(y" = Y)Lw(Y; - Y)

o Calculate second sum separately for each region

1 - _
b= (%= V) Swi(Y; - V)

o global statistic is then | = X;/;/¥; jwj;
o illustrate using species diversity data
o Data and where Moran's [; marking Z; > 2

o Blue areas for Ips are marking where that region is significantly similar
to neighboring regions
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LISA for spp diversity data
spdiv Ips
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Moran correlogram

o Define different weight matrices using different distance classes

o (0, 1.5) using queen’s move neighbors
o (2, 3) — regions slightly further apart
e (3,5), and so on

@ Or, use st nearest neighbor, 2nd NN, 3rd NN, ...

Calculate Moran's | for each weight matrix

@ Plot / vs distance
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Join count statistics

@ Moran’s | and Geary's c are for continuous observations
o c: “similar” because (Y; — Y;)? is small
@ What about categorical data
e E.g., US states, record whether governor is Republican or Democrat
@ Is there spatial correlation?
o i.e., If your state is Republican, are neighboring states more likely to be
Republican?
@ Usual approach is the Black-Black (BB) join count statistic

1

BB
2

Z,‘\/W,‘jl,‘/j

@ /i is 1 if the “event” happens in region |
If wj; is 1 if neighbors, 0 otherwise, BB is the number of pairs where
both region and neighbor are events
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Join count statistics

Compare BB to expected value if no spatial dependence

Either a Z-test (assume normal-distribution)

_ BB-EBB

V4
v/'Var BB

or permutation:

o keep same number of “event” and non-‘“event” regions,

o keep neighbor structure,

o assign “event” / non-‘“event” randomly to regions.

o compute BB for each randomization
Example: Species diversity plot, define “rich” as 6 or more species
Rich-rich, rooks neighbors: BB = 53, E BB = 35, Var BB = 8.495
Normal approximation: Z = (53 — 35)/1/8.495 = 6.176, p < 0.0001

Permutation: 53 is larger than any of 9999 randomizations, p =
0.0001
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TRUE
FALSE
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Frequency
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BB for random assignments
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Combining multiple sites

@ Imagine a study of spatial dependence in lowa that is repeated in
Indiana.

@ Methods above will describe that spatial dependence in each state

o What if you believed the spatial dependence was similar in the two,
and wanted one result

@ How can you combine information from both states?

@ No problem, but should think about a few issues.
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Combining multiple sites

@ 1) One mean for both states, or separate means?
o the issue is the scale of spatial dependence
(within state only or including between state)
e not an issue if the means are similar, but they are often are not
o Separate means — evaluates pooled within state spatial dependence
o Separate means is most common

@ 2) Include only pairs of regions within states, or pairs crossing states?

o Same spatial scale issues.
o Only pairs within states is most common.
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Combining multiple sites

@ 3) Do the two states contribute equal amounts of information?
Here, same within state sampling, same # regions, same weighting
scheme (In my story)

So, equal amounts of information

use a simple average of both states (A and B)

T for both states: | = (Ix + I)/2

El=(Ela+EIg)/2

Var [ = (Var Ta + Var fB)/4

If unequal amounts of information, use a weighted average
Many possible ways to weight, depends on study specifics
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Combining multiple sites

o Hard part is getting estimate and its variance
@ Test Ho: no within state spatial dependence

o Z score for overall study, or

e permuting observations within state.
@ BTW, same ideas can be used for semivariograms for multiple sites
o Computing trick:
artificially separate sites,
make sure min distance between IA and IN larger than max within
state distance
o specify max semivariogram distance so that all pairs are within a site.
weights each region by number of pairs
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Multiple sites: example

o lowa: [ =0.35, E [ = —0.0159, Var | = 0.085
o Indiana: [ = 0.42, E [ = —0.0159, Var | = 0.085
@ Individually:

. > _ 0.35-(—0.0159) _ _
o lowa: Z = oo 1.25, p =0.10

. _ 0.42-(=0.0159) _ _
o Indiana: Z = B 1.49, p = 0.067

o Together: [ = (0.35+0.42)/2 = 0.385, E [ = —0.0159,
Var [ = (0.085 + 0.085)/4 = 0.0425

_0.385—(—0.0159) _ _
o 7 =238 (0A19) — 1,04, p = 0.026

@ Similar patterns in both areas, aggregate the two = stronger evidence
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